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MAST CELLS IN ATOPIC DISEASES:  
MORE THAN JUST HISTAMINE 
Abstract
Mast cells are present in all tissues and are able 
to release multiple mediators in response to 
allergic, autoimmune, environmental, 
neurohormonal and pathogenic triggers. 
Histamine has received most of the attention in 
terms of pathophysiology and drug 
development, while tryptase remains to this 
date with no clear function and no known 
inhibitor. Mast cells can also release pro-
inflammatory and pruritogenic molecules, such 
as IL-6 and IL-31, selectively without 
degranulation. One such critical molecule is 
platelet activating factor (PAF), which is 
vasoactive, can cause wheal and flare on its 
own, but can also stimulate eosinophils and 
mast cells that are critical in the pathogenesis of 
chronic spontaneous urticaria (CSU) and rhinitis. 
Mast cell-derived cytokines and PAF have also 
been implicated in inflammatory processes 
including COVID-19. Among the second 
generation histamine-1 receptor antagonists, 
rupatadine is more effective overall, it has 
potent anti-PAF activity, and also inhibits 
activation of human mast cells and eosinophils. 
Rupatadine could, therefore, serve as a first-line 
drug for CSU and rhinitis, but may also be used, 
especially for patients resistant to 
antihistamines. 

Biology of Mast Cells
Mast cells1-5 derive from hematopoietic 
precursors,6 travel in the circulation as precursor 
cells and proliferate in response to stem cell 
factor (SCF), the ligand of the surface tyrosine 
kinase receptor CD117 (C-KIT).7 Mast cells 
mature and are located perivascularly8-10 in all 
tissues11 under the influence of local micro-
environmental factors12, 40 resulting in different 
phenotypes.13 Mast cells are present in the 
brain,14,15 including the meninges,16,17 and the 
median eminence16,18,19 where they are located 
perivascularly in close proximity to neurons20 
that are positive for corticotropin releasing 
hormone (CRH).16 Brain mast cells are the 
richest source of histamine,21 which is involved 
in neurodevelopment.22 Furthermore, histamine 

may serve as an alert signal in the brain when 
high attention or a strong wake-drive is needed, 
such as during exploration, learning and 
motivation.23 Brain mast cells have been 
associated with memory consolidation and 
retrieval,24-26 as well as arousal27,28 and 
motivation.29,30

Mast cells are typically activated by allergens 
crosslinking specific immunoglobulin E (IgE) 
bound to high affinity surface Fc epsilon 
receptor 1 (FcεRI).31,32 Even though mature mast 
cells reside in the tissues, they probe the blood 
vessel lumen by extending filopodia through 
endothelial gaps, capturing IgE from the 
circulation, and sensing circulating antigens.33 
Contrary to early research, fetal mast cells can 
bind maternal circulating IgE and contribute to 
postnatal allergic responses.34 Quite 
surprisingly, prenatal stressful events have been 
reported to increase cord blood IgE.35 

Mast cells are also triggered by non-IgE 
stimuli36-38 and by additional ligands,39 including 
neuropeptides,40 such as CRH,41 neurotensin (NT),42 
substance P (SP)43 and somatostatin44,45 via high 
affinity receptors (Table 1), as well as by many 
cationic compounds through the low affinity 
G-coupled receptor MRGPRX2.46 This process is 
distinct from that utilizing the FcεRI and may 
lead to release of different mediators. Allergic 
stimulation of mast cells leads to secretion of 
the SP-related peptide Hemokinin-1, which 
augments IgE-mediated allergic responses by 
binding with low affinity to the SP receptor 
(NK1) on mast cells.47 CRH augmented release 
from human mast cells stimulated by IgE/
anti-IgE of vascular endothelial growth factor 
(VEGF), which is also vasodilatory, could 
contribute to edema and has been shown to be 
increased in lesional skin in CSU.48 Mast cells are 
also triggered by pathogens including fungi,49 
toxins,50 as well as viruses51,52 including SARS-
CoV-2.53,54 Mast cells express multiple receptors 
for a variety of stimuli (Table 1),40,55 including 
receptors for sex hormones.56 In addition, mast 
cells can synthesize hormones57 and 
neuropeptides such as CRH,58 as well as the 
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Table 1. Main Mast Cell Receptors
Receptor Ligand

A2A, A2B, A3 Adenosine

ACTH-R Adrenocorticotrophin

ACE2 Angiotensin 2

Beta2-Adrenoreceptor Adrenaline

Cannabinoid CB2 receptor 2-arachidonoyl-glycerol, anandamide

C3a, C5a Complement

C-kit (CD117) Stem cell factor

CXCR1-4 Chemokines

CD47 Integrins

CD300 Eosinophilic Cationic proteins

CRHR-1, 2 CRH, urocortin

Estrogen receptors A,B Estrogens

ETA, B Endothelin-1

FcalphaR (CD89) IgA

FcepsilonR IgE

FcgammaRI, RIIA, RIIB, RIII IgG

GABA-A, B, C Benzodiazepines, gamma-aminobutyric

NMDAR, AMPAR, and kainate receptors Gluatamate

Heparan sulfate Bacterial, viral antigens

H1, H2, H3 Histamine

IL-1R1 IL-1beta

IL-4R IL-4, IL-13

IL-6R+IL6ST/GP130/IL6-beta IL-6

IL-10R1,2 IL-10

IL-17R IL-17

IL-18Ralpha+IL-18Rbeta IL-18

LDL, VLDL Apolipoprotein E

Mel1a, Mel1b, MT1, MT2 Melatonin

NGFR (CD271 or p75 neurotrophinR) neurotrophic factor Nerve growth factor, brain-derived

MHCI, II Antigenic peptides

MRGPRX2 Cationic peptides

NK-1 Substance P, emokinin-1

NT3 Neurotensin

Opioid receptors Endorphins, encephalins

PAF-R Platelet activating factor

PAR Proteases

Progesterone receptor Progestins

ST2 IL-33

TGFBR1,2 and 3 TGFbeta

TLR(1-9) DAMPs, Pathogens

VDR Vitamin D
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peptide neurotensin (NT),59 which 
can sensitize sensory nerve 
endings and mediate the effect of 
stress. Mast cells in the pineal and 
the hypothalamus may also be 
involved in circadian rhythms.60-63

Upon stimulation, mast cells 
rapidly secrete via degranulation 
multiple mediators that include the 
preformed, granule-stored such as 
heparin, histamine, tryptase and 
TNF.3 Histamine has been the main 
mediator associated with mast 
cells,64,65 but is also released from 
basophils.66 Interestingly, mast 
cells can also generate a 
histamine-releasing peptide from 
albumin,67 meaning that once 
stimulated mast cells can release 
enzymes that can act on albumin 
and produce a peptide that can 
further stimulate mast cells. Mast 
cells also secrete newly 
synthesized mediators 6-24 hours 
after stimulation (late-phase 
reaction); these include 
prostaglandin D2 (PGD2),

68 
cytokines (IL-5, IL-6, IL-31, IL-33 
and TNF) and chemokines  
(CCL2, CCL5 and CXCL8), 4,5,69 as 
well as platelet activating factor 
(PAF),70 which has been implicated 
in inflammation71 and 
microthromboses.71,72 PAF has 
many potent biological effects on 
almost all tissues and organs, 
leading to inflammation and 
microthromboses.71 PAF is the 
most potent trigger of platelet 
aggregation known. It was 
discovered in 1972.73 Its structure 
was elucidated in 1979 by 
Demopoulos and colleagues as a 
glyceryl-ether lipid (1-O-alkyl-2-
acetyl-sn-glycero-3-
phosphocholine).74 PAF is 
produced by many prokaryotic and 
eukaryotic cells, but it is extremely 
short-lived making its routine 
measurement in biologic fluids 
difficult.75

Selective release of mediators
Mast cells can release specific 
mediators, such as serotonin,76 
IL-677 and VEGF78 without 

degranulation, but rather via 
intragranular changes associated 
with release of mediators without 
release of histamine or tryptase.79 
In addition, the “alarmin” IL-3380-82 
stimulates mast cells via activation 
of its own specific surface receptor, 
ST2, significantly increasing the 
ability of SP to stimulate release of 
VEGF,43,83 IL-31,84 TNF85 and  
IL-1b,86 as well as CCL2 and 
CCXL887 and other newly 
synthesized mediators.82 IL-33 also 
augments release of IL-31 from 
human mast cells stimulated either 
by SP or IgE/anti-IgE.84 Mast cells 
can release IL-33, themselves.88 
Mast cell-derived IL-1b or 
histamine-induced release of IL-1b 
from macrophages89 can then 
stimulate mast cells to release IL-6 
selectively without degranulation.77,90 
IL-6 is elevated in systemic 
mastocytosis and correlated with 
disease severity,91-93 and is also 
elevated in COVID-19.94,95 In fact, 
IL-6 promotes an increase in mast 
cell numbers,96 and is constitutively 
released in the presence of the 
D816V-KIT mutation.97 IL-6 and 
other mast cell-derived molecules, 
such as bradykinin, IL-31, matrix 
metalloproteinase-9 (MMP-9) and 
PAF are quite pruritogenic  
(Table 2).

We had called brain mast cells the 
“immune gate to the brain”14 and 
the “immunoendocrine master 
player.”98 Restraint stress in 
rodents increased blood-brain 
barrier (BBB) permeability18,99,100 via 
CRH-stimulating mast cells.99,101,102 
Mast cell-derived mediators, such 
as cytokines,103,104 increased BBB 
permeability not only to small 
molecules,18,99 but also to 
mammary adenocarcinoma brain 
metastases in mice.101 This process 
could worsen with stress, including 
psychological stress acting via 
CRH stimulation of mast cells99,101 
leading to increased dura vascular 
permeability105-- an effect that was 
absent in mast cell-deficient 
mice.106 Allergic stimulation of 
nasal mast cells resulted in 
stimulation of the hypothalamic-

pituitary-adrenal (HPA) axis,41, 107-109 
possibly via mast cell release of 
histamine,110 IL-6111 and CRH.58  
The regulation of mast cells by 
neuropeptide and 
neurotransmitters was reviewed 
recently.40,112,113

The mode and extent of mast cell 
responsiveness ultimately depends 
on the interplay between 
stimulatory and inhibitory signaling 
pathways. Mast cell responsiveness 
may be regulated not only by the 
neuroimmune stimuli, but also by 
the effects of the different 
receptors involved. For instance, 
mast cells express high affinity 
NK-1 receptors for SP.85,114 
Moreover, SP115 and NT116 induced 
the expression of CRHR-1 in 
human mast cells. Secretion of 
mediators can occur utilizing 
different signaling117-120 and 
secretory117,121 pathways. The 
diagnosis of atopic diseases rests 
on clinical symptoms and the 
measurement of a number of 
molecules in the blood and urine 
(Table 3). However, there are no 
specific mast cell markers;122 
histamine is degraded within a few 
minutes, while tryptase reflects the 
mast cell volume rather than its 
activation. Moreover, mast cells are 
also implicated in both health and 
disease,38,123,120,124 especially 
immunity125,126 and 
inflammation.38,127,128  

Pathophysiology of Chronic 
Spontaneous Urticaria (CSU)
CSU is a common skin condition 
characterized by wheals and flares, 
but also intense itching, with or 
without angioedema129,130 and 
constitutes a major global health 
burden.131

Mast cells are a necessary 
component in the pathogenesis of 
CSU,132 but so are eosinophils.133 

CSU is a clinical diagnosis. In spite 
of proposals for potential blood 
biomarkers, to date there is no 
consensus of specific biomarkers  
for CSU.134,135 Elevations of 
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D-Dimer, eosinophil cationic 
protein (ECP), IL-6, matrix 
metalloproteinase-9 (MMP-9), PAF, 
TNF and vitamin D3 are the most 
useful markers for the diagnosis of 
CSU (Table 4). In addition, the 
presence of dermatographia and a 
positive anti-FcεRI IgG (basophil 
activation test) are commonly 
present in such patients (Table 4). 
Elevated mean serum IgE levels 
and blood eosinophils, along with 
the presence of positive skin prick 
tests to aeroallergens, correlates 
with the presence of anti-FcεRI IgG 
and anti-IgE IgG.136 It was recently 
shown that elevated serum levels 
of the non-specific mast cell 
surface receptor MMRGPRX2 
correlated with disease severity in 
CSU.137 These findings may explain 
why as many as 30% of patients 
with CSU are resistant to 
antihistamines (Table 4).131,138

Elevated PAF levels had been 
strongly associated with severe 
anaphylaxis,139,140 more so than 
histamine or tryptase.141 Moreover, 
combination treatment blocking 
both PAF and histamine markedly 
reduces the severity of peanut-
induced anaphylaxis.142 PAF is also 
reported to be involved in allergies 
in general,143 and more specifically 
in allergic rhinitis,144,145 immediate 
and late cutaneous reactions,146 as 
well as CSU.147 

With respect to allergic rhinitis,145 

PAF has been identified in nasal 
polyps and eosinophils,144 and has 
been shown to stimulate 
eosinophils,148,149 especially 
superoxide ion generation.150 More 
specifically, PAF is believed to be 
more potent than histamine in 
increasing nasal airway resistance.151 
PAF appears to have a bidirectional 
association with cytokines. For 
instance, IL-6 stimulates production 
of PAF, 152,153 while PAF induces IL-6 
production.154-156 Elevated blood 
PAF levels have been reported in 
patients refractory to treatment 
with antihistamines.147 Additionally, 
PAF-induced wheal and flare 
reactions on their own, are 

Table 3. Laboratory Tests for Diagnosis of Atopic Conditions
Blood

• IgE, IgG1, IgG4

• Immune IgE (RAST for alpha-gal, casein, 
      gluten, dust mites, fungi, grass, pollen) 

• Anti-IgE receptor antibody (basophil activation test)

• CCL2, CXCL8 (IL-8)

• Food Intolerance Panel

• Heparin

• IL-4, IL-6, IL-31

• PGD2

• Tryptase

Urine 24 hours or first-morning void (must be kept and sent 
cold)
• LTE4

• N-Methylhistamine (NMH) or methylimidazole acetic acid (MIA)

• PGD2

• 2,3-Dinor-11b-PGF2a

Table 2. Pruritogenic Molecules Released From Mast Cells
• Adenosine

• Bradykinin

• LTC4

• Histamine

• IL-6

• IL-31

• MMP-9

• PAF

• PGD2

• Substance P (SP)

• TNF

• Tryptase
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independent from histamine.157 
These findings indicate that PAF 
plays a major role in CSU by 
having a direct effect on the skin 
independent of histamine, but also 
stimulating mast cells to release 
other pruritogenic molecules. 

A key aspect of CSU is pruritus .158, 159 
As mentioned earlier, a number of 
mast cell-derived molecules are 
involved in pruritus (Table 3), 
especially IL-31,160-162 which has 
been reported to be elevated in 
CSU.163 Research has 
demonstrated that human mast 
cells can release IL-31 in response 
to allergic and non-allergic 
triggers, especially IL-33.84 

Unfortunately, IL-31 is not yet 
measured in clinical laboratories.

Pruritus in general,164 and in CSU 
specifically,165 worsens with stress. 
Pruritus is mediated by 
neuroimmune circuits,166 especially 
the interactions between 
peripheral nerves, mast cells and 
eosinophils.167 In this context, it 
may be relevant that PAF 
stimulates expression of 
histamine-1 receptors in trigeminal 
ganglia,168 implying that it may 
have a similar action on cutaneous 
sensory nerves resulting in 
increased sensitivity to histamine.

Role of mast cells and PAF in 
COVID-19

The pathogenesis of most patients 
with COVID-19 is significant for 
the presence of perivascular 
inflammation and microthrombi169-171 
that could involve PAF.71,72,172  
The mediators involved could be 
released from mast cells.72,89,173-177 
Mast cell degranulation associated 
with interstitial edema and 
immunothrombosis has been 
reported in the alveolar septa of 
deceased patients with COVID-19.54 
In fact, mast cell-derived chymase 
was shown to be elevated in the 
serum of patients with 
COVID-19178,179 as have been 
eosinophil-related mediators.179 

Another study reported increased 

number of eosinophils in the blood 
of patients with COVID-19.180 
Interestingly, many COVID-19 
patients also develop urticaria.181,72, 

89,173-177 

Many patients (30-50%) infected 
with SARS-CoV-2 develop a post-
acute syndrome a few months 
after the initial infection182-186 
known as post-acute COVID or 
“long-COVID.”183,187-189 Long 
COVID is particularly associated 
with persistent fatigue190 and 
cognitive dysfunction, known as 
brain fog.183,188,189,191-197 Symptoms 
experienced by COVID patients, 
especially cognitive dysfunction,198-200 
are similar174,175 to those present in 
patients with mast cell activation 
syndrome (MCAS).201,202 Mast cells 
in such patients can be stimulated 
by environmental and stress 
triggers11 and viruses52 including 
SARS-CoV-2.53,176,203

Treatment approaches
There are still no clinically effective 
mast cell inhibitors.204, 205 A number 
of inhibitors of the tyrosine kinase 
c-kit receptor that block mast cell 
proliferation have been 
developed,206,207 but most of them 
do not inhibit mast cell activation.208 
Disodium cromoglycate 
(cromolyn), known as a “mast cell 
stabilizer,” had originally been 
shown to inhibit rat peritoneal 
mast cell histamine release.209 
However, cromolyn does not 
effectively inhibit either murine 
mast cells210 or human mast 
cells.212-214 The first generation 
histamine-1 receptor antagonist 
ketotifen has been promoted as a 
mast cell inhibitor, but the only 
such evidence is from a few 
studies using conjuctival mast 
cells, and it is very sedating. New 
approaches address new histamine 
receptors,211 such as the putative 
inhibitory receptor 
(Siglec-8).138,212,213

Table 4. Patients Resistant to Antihistamines
1. Angioedema

2. Presence of Dermatographia

3. Anti-IgE IgG

4. Positive Anti-FcεRI IgG ( basophil activation test)

5. Elevated serum levels of:

• D-Dimer (angioedema)

• Eosinophilic cationic protein (ECP)

• IgE

• IL-6

• IL-31

• Matrix Metalloproteinase-9 (MMP-9)

• MRGPRX2

• Platelet Activating Factor (PAF)

• TNF

6. Decreased Vitamin D3 (1,25-OH)
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Avoidance of potential triggers 
(Table 5) is self-evident. 
Supplementation with the main 
histamine metabolizing enzyme, 
diamine oxidase214 and Vitamin 
D3,215 which has been shown to 
modulate immune responses216 
and suppresses the production of 
VEGF from mast cells in CSU217 
may be helpful.

The initial treatment approach is 
the use of second-generation, 
non-sedating histamine-1 receptor 
antagonists up to 4 times the 
recommended doses as tolerated 
(Table 5).129,218-221 One of these, the 
histamine-1 receptor antagonist 
rupatadine, was specifically 
developed to have potent anti-
PAF activity.222 The relative potency 
of rupatadine for blocking the 
histamine-1 receptor using 
histamine-induced guinea pig 
ileum contraction was shown to be 
about 24x greater than cetirizine 
and 75x greater than loratadine.223 
Rupatadine at 40 mg/day is well 
tolerated and inhibits histamine- 
and PAF-induced flares and ex vivo 
platelet aggregation in normal 
male subjects.224 When compared 
to other non-sedating antihistamines 
in chronic urticaria, 20 mg/day of 
rupatadine showed the greatest 
efficacy in the treatment of CSU 
(71.6%) as compared to 80 mg/day 
of bilastine (60%), 20 mg/day of 
desloratadine (50%), 240 mg b.i.d. 
of fexofenadine (56%), and 20 mg/
day of levocetirizine (21.7%).225 In a 
network meta-analysis comparing 
the efficacy of second-generation 
antihistamines in CSU, rupatadine 
was superior to other 
antihistamines including bilastine 
with respect to change from 
baseline in pruritus and wheal 
scores.226 

Notably, rupatadine also inhibited 
histamine and TNF release from 
human mast cells in response to 
PAF,36 and the release of histamine 
and IL-6 from human mast cells 
stimulated by different triggers.227 
In another study comparing 
rupatadine to desloratadine and 

levocetirizine, rupatadine was 
shown to be superior at inhibiting 
PAF-induced release of histamine 
from human mast cells.228

As discussed earlier, many patients 
with CSU do not respond to 
antihistamines (Table 4). For such 
patients, the anti-IgE omalizumab 
may be an appropriate treatment 
option.229 

Conclusion

Mast cells have useful physiologic 
functions,231 and play a critical role 
in atopic diseases,11 especially 
allergies38 and anaphylactic 
reactions,2,4,11,231 as well as 
inflammation.2,128,230,232,233 Given the 
multiple pathways involved in 

CSU, the possession of potent 
anti-PAF, anti-eosinophilic and 
mast cell inhibitory properties by 
rupatadine, makes it an excellent 
first-line drug for this debilitating 
condition. 

Table 5. Histamine-1 Receptor Antagonists
Drug Characteristics

• Bilastine Nonsedating

• Cetirizine Nonsedating

• Levocetirizine Nonsedating

• Cyproheptadine Antiserotonergic

• Diphenhydramine Sedating

• Hydroxyzine Anxiolytic

• Ketotifen Anti-eosinophilic

• Loratadine Nonsedating

• Desloratadine Nonsedating

• Mizolastine Nonsedating

• Rupatadine Nonsedating, anti-PAF, mast cell 
inhibitor

Tricyclic Antidepressants

• Amitriptyline (Elavil) Weight gain

• Doxepin Also H2 receptor antagonist

Phenothiazines

• Promethazine Antiemetic

• Prochlorperazine Antiemetic
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